
Mr. Girish Nille Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.47-50

 www.ijera.com 47 | P a g e

SRGM Analyzers Tool of SDLC for Software Improving Quality
Mr. Girish Nille, Prof. Bharat Tidake

Abstract—
Software Reliability Growth Models (SRGM) have been developed to estimate software reliability measures such as

software failure rate, number of remaining faults and software reliability. In this paper, the software analyzers tool proposed

for deriving several software reliability growth models based on Enhanced Non-homogeneous Poisson Process (ENHPP) in

the presence of imperfect debugging and error generation. The proposed models are initially formulated for the case when

there is no differentiation between failure observation and fault removal testing processes and then this extended for the case

when there is a clear differentiation between failure observation and fault removal testing processes. Many Software

Reliability Growth Models (SRGM) have been developed to describe software failures as a random process and can be used

to measure the development status during testing. With SRGM software consultants can easily measure (or evaluate) the

software reliability (or quality) and plot software reliability growth charts.

Keywords— Software Reliability Growth Model (SRGM), Testing Coverage (TC), Testing Time, Cobb Douglas

Production Function, ENHPP (Enhanced Non-Homogenous Poisson Process), Fault Detection Rate (FDR).

I. INTRODUCTION
 The concern for software reliability has grown

over a period of time especially with the advent of

real life systems such as satellite and shuttle control,

telephone, internet and banking services. With the

growing economy there has been a growing interest

of companies to know about their competitors and

have been spending a lot on strategic decision

making. All these activities require complex software

systems. It is important that these systems are

thoroughly tested before implementation. There is a

huge cost attached with fixing failures, safety

concerns, and legal liabilities therefore organizations

need to produce software that is reliable. There are

several methodologies to develop software but

questions that need to be addressed are how many

times will the software fail and when, how to estimate

testing coverage, when to stop testing, and when to

release the software. Also, for a software product

there is need to predict/estimate the maintenance

effort; for example, how long the warranty period

must be, once the software is released, how many

defects can be expected at what severity levels, how

many engineers are required to support the product,

for how long, and so forth[1].

 Software reliability assessment is an important

issue for planning release of high-quality software

products to users. Many developers have proposed

software reliability growth models (SRGMs) to assess

software quantitatively from fault data observed in

software testing phase [1-2, 3-4]. Software reliability

is defined as the probability of failure free software

operation for a specified period of time in a specified

environment. It is used to assess the reliability of the

software during testing and operational phases.

Software testing involves running the software and

checking for unexpected behavior in software output.

The successful test can be considered to be one,

which reveals the presence of the latent faults. The

process of locating the faults and designing the

procedures to detect them was called the debugging

process. The chronology of failure occurrence and

fault detections can be utilized to provide an estimate

of the software reliability and the level of fault

content. In particular, the Enhanced non-

homogeneous Poisson process (ENHPP) [10] based

SRGMs are quite popular due to their mathematical

tractability, and there have been a number of ENHPP-

based SRGMs proposed by many Developers. In spite

of the diversity and elegance of many of these, no

single model can be readily recommended as best to

represent the challenging nature of the software

testing[9,7].

 As reliability is of great concern for software

products this field is catching attention of various

researchers and practitioners. This has lead to a new

concept Software Reliability Growth Modeling. An

SRGM is defined as a tool that can be used to

evaluate the software quantitatively, develop test

status, schedule status, and monitor the changes in

reliability performance. Software reliability

assessment and prediction is important to evaluate the

performance of software system. The reliability of the

software is quantified in terms of the estimated

number of faults remaining in the software system.

During the testing phase, the emphasis is on reducing

the remaining fault content hence increasing the

software reliability. The SRGMs developed in

literature are either dependent on testing time, testing

effort or testing coverage. Testing time is the calendar

time or the CPU time whereas testing effort takes into

account the manpower time and the CPU time. The

papers discuss some novel software reliability growth

models dependent on time. Testing Coverage plays a

very important role in predicting the software

reliability. Testing Coverage is actually a structural

testing technique in which the software performance

is judged with respect to specification of the source

RESEARCH ARTICLE OPEN ACCESS

Mr. Girish Nille Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.47-50

 www.ijera.com 48 | P a g e

code and the extent or the degree to which software is

executed by the test cases. TC can help software

developers to evaluate the quality of the tested

software and determine how much additional effort is

needed to improve the reliability of the software

besides providing customers with a quantitative

confidence criterion while planning to use a software

product. Hence, safety critical system has a high

coverage objective.

II. LITERATURE SURVEY
 Various investigative programming dependability

shows have been proposed for evaluating the

unwavering quality development of a programming

item. The paper present an Enhanced non-

homogeneous Poisson process (ENHPP) model [10]

and show that awhile ago reported Non-homogeneous

Poisson process (NHPP) based models, with limited

mean esteem capacities, are extraordinary instances

of the (ENHPP) model. The (ENHPP) model

contrasts from past models in that it consolidates

unequivocally the time differing test scope capacity in

its analytical definition, and accommodates damaged

blame discovery in the testing stage and test scope

throughout the testing and operational stages . The

(ENHPP) model is validated utilizing a few

accessible inadequacy information sets.

 Many Developers have incorporated change point

in software reliability growth modeling. Firstly Zhao

[5] incorporated change-point in software and

hardware reliability. Huang et al. [4] used change-

point in software reliability growth modeling with

testing effort functions. The imperfect debugging

with change-point has been introduced in software

reliability growth modeling by Shyur. Kapur et al. [6,

8] introduced various testing effort functions and

testing effort control with change-point in software

reliability growth modeling. The multiple change-

points in software reliability growth modeling for

fielded software have been proposed by Kapur et al.

[6, 7]. A testing coverage based SRGM was proposed

by Malaiya [6]. Inoue and Yamada [5] developed

SRGM to describe a time-dependent behavior of a

testing-coverage attainment process with the testing-

skill of test-case designer.

III. STATEMENT OF AIM AND

OBJECTIVE
 Aim of this model is achieve the reliability of the

software and Increases role of software in real life

systems. Objectives are to manage and improve:

 The reliability of the software

 Check the efficiency of development

activities

 Evaluate the software reliability at the end of

validation activities and in operation

 Estimate the maintenance effort to “correct”

faults activated during development and

residual faults in operation.

IV. PROPOSED SYSTEM MODEL
 The paper has propose a generalized framework

for deriving several testing time and testing coverage

depends on Enhanced Non-Homogeneous Poisson

Process software reliability growth model which

incorporate Change point. Change point is one of the

interesting phenomenons on observed during software

development. Inclusion of change point in software

reliability growth modeling enhances the predictive

accuracy of the model.

 The proposed models are based upon the following

basic assumptions.

 The failure observation and fault removal

phenomenon is modeled using an ENHPP

[10].

 Software is subject to failures during

execution caused by faults remaining in the

software.

 Each time a failure is observed, an

immediate debugging effort takes place to

find the cause of the failure to remove it.

 The failure rate is equally affected by all the

faults remaining in the software.

 When a software failure occurs, an

instantaneous repair effort starts, and then

either (a) the fault content is reduced by one

with probability , or (b) the fault content

remains unchanged with probability .

 During the fault removal process, whether

the fault is removed successfully or not, new

faults are generated with a constant

probability.

Fig. 1 ENHPP Model

A] ENHPP Model Phases

i] Phases of Analyzer:

1. Identifying Phase [11]

This phase consist identifying software such as

TNOA, WMPC, NOCP etc. as shown below.

TNOC: It counts total of attributes for a class.

WMPC: It counts all class methods per class.

Mr. Girish Nille Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.47-50

 www.ijera.com 49 | P a g e

NOCP: It Count the Number of classes in a package.

MIT: It calculates the longest path from the class to

the root of the inheritance tree.

CCIM: It measures the number of linearly

independent paths through a program module .i.e. the

amount of decision logic in a single software factor. It

is calculated per class.

SIZE: It refers to the count total lines of code.

2. Evaluation Phase [11]

This phase consists of evaluating the various software

measure written as a part of “Analyzer” tool

development which are provided for examination

3. Interpretation and Advising Phase [11]

The interpretation part of the measure Analyzer takes

the extracted measure values in measure Evaluation

Phase from the source code and compares these

values with the threshold values of the corresponding

metric values. If the extracted metric values lies

below the corresponding metric threshold value

means that no occurrence of the issue that is being

observed and extracted measure values lies above the

corresponding metric threshold value means

maximum occurrence of the observed issue.

4. Application Phase [11]

In this phase, software refactoring is done .Our tool

“measure Analyzer” applies the Object Oriented

metrics on the code base and these metric values are

then interpreted. Then various refactoring techniques

were used to improve the code design and along with

that paper has also studied the impact of refactoring

on the software quality through various measures.

V. METHODOLOGIES AND TECHNIQUES

ENHPP (Enhanced Non-Homogeneous Poisson

Process) model – [10]

 The ENHPP model provides a unifying framework

for finite failure software reliability growth models

According to this model, the expected number of

faults detected by time t, called the mean value

function, n (t) is of the form:

n (t) = b * c (t)

Where b is the needed number of shortcomings in the

programming (before testing/debugging starts), and c

(t) is the scope capacity. The ENHPP model utilized

by SREPT gives by default to reflect four sorts of

inadequacy event rates for every fault. Inter flop

times information acquired from the testing stage

could be utilized to parameterize the ENHPP

(Enhanced Non Homogeneous Poisson Process)

model to acquire gauges of the inadequacy force,

number of flaws remaining, dependability after

discharge, and scope for the programming. When

complexity metrics are available, the total number of

faults in the software can be estimated using the fault

density approach or the regression tree model. If the

number of lines of code in the software is NL, the

expected number of faults can be estimated as, [4]:

F = NL * FD

 The relapse tree model is an objective arranged

statistical method, which endeavors to foresee the

amount of deficiencies in a programming module

dependent upon the static unpredictability

measurements. The structure of the ENHPP model

might additionally be utilized to join the appraisal of

the aggregate number of issues acquired after the

testing stage dependent upon unpredictability

measurements (parameter a), with the scope

informative content got throughout the testing stage

(c (t)). The ENHPP model [10] can also use inter

failure times from the testing phase to obtain release

times (optimal time to stop testing) for the software

on the basis of a specified release criteria.

 Release criteria [10] could be of the following types

–

Number of remaining faults - In this case, the release

time is when a fraction of all detectable faults has

been removed.

Failure intensity requirements - The criterion based

on failure intensity suggests that the software

should be released when the failure intensity

measured at the end of the development test phase

reaches a specified value f.

Reliability requirements - This criteria could be used

to specify that the required conditional reliability in

the operational phase is, say Rr at time t0 after

product release.

Cost requirements - From a knowledge of the

expected cost of removing a fault during testing, the

expected cost of removing a fault during operation,

and the expected cost of software testing per unit

time, the total cost can be estimated. The release time

is obtained by determining the time that minimizes

this total cost.

Availability requirements - The release time can be

estimated based on an operational availability

requirement [2].

 The Cobb-Douglas [10] employs production

function to demonstrate the effect of both testing time

and testing coverage in removing the faults in the

software.

 The SRGMs developed in literature are either

dependent on testing time, testing effort or testing

coverage. Testing time is the calendar time or the

CPU time whereas testing effort takes into account

the manpower time and the CPU time.

 The mathematical form of the production

function is follows:

Where:

 Y = total production (the monetary value of

all goods produced in a year)

Mr. Girish Nille Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 11(Version - 5), November 2014, pp.47-50

 www.ijera.com 50 | P a g e

 L = labor input (the total number of person-

hours worked in a year)

 K = capital input (the monetary worth of all

machinery, equipment, and buildings)

 A = total factor productivity

 α and β are the output elasticity’s of capital

and labor, respectively. These values are

constants determined by available

technology.

SRGMs have been proposed to measure the reliability

during the testing phase. Most of these can be

categorized under Non Homogeneous Poisson

Process (NHPP) model [10].

The SRGM based on NHPP is formulated as:

There is rate function is λ(t) means rate parameter

may change over time and expected number of events

between time a and time b is

The number of the events or arrivals in the time

interval (a, b], given as N (b)-N (a). Follow a poisson

distribution associated with parameter

λa,b

P [(N (b)-N (a)) =k] is number of events in time

interval (a, b]

CONCLUSION
 This paper has proposed SRGM in testing phase of

SDLC to ensure the most reliable software and

quality. The paper have to develop ENHPP

(Enhanced Non-Homogeneous Poisson Process)

model to find out errors and faults in the current and

existing system .It will improve the quality and

reliability of the software and moreover, it will

eliminate the errors and faults in the current and

existing system. Therefore the SRGM testing will

become more authentic

REFERENCES
[1] A Detailed Study of Nhpp Software

Reliability Models. Journal Of Software, Vol.

7, No. 6, June 2012.

[2] Two Dimensional Flexible Software

Reliability Growth Model With Two Types

Of Imperfect Debugging. P.K. Kapur1, Anu

G. Aggarwal And Abhishek Tandon3.

Department Of Operational Research,

University Of Delhi.

 [3] Analysis of Discrete Software Reliability

Models- Technical Report (Radctr- 80-84”

1980; New York: Rome Air Development

Center.

[4] Comparing Various Sdlc Models and The

New Proposed Model On The Basis Of

Available Methodology Vishwas Massey,

Prof. K.J.Satao.

[5] Inoue S, Yamada S “Testing-Coverage

Dependent Software Reliability Growth

Modeling” International Journal Of

Reliability, Quality And Safety

Engineering,Vol. 11, No. 4, 303-312, 2004.

[6] S.Saira Thabasum, “Need For Design Patterns

And Frameworks For Quality Software

Development”, International Journal Of

Computer Engineering & Technology (Ijcet),

Volume 3, Issue 1, 2012, Pp. 54 - 58, Issn

Print: 0976 – 6367, Issn Online: 0976 – 6375.

[7] S.Manivannan And Dr.S.Balasubramanian,

“Software Process And Product Quality

Assurance In It Organizations”, International

Journal Of Computer Engineering &

Technology (Ijcet), Volume 1, Issue 1, 2010,

Pp. 147 - 157, Issn Print: 0976 – 6367, Issn

Online: 0976 – 6375.

[8] Software Reliability Growth Model Based On

Fuzzy Wavelet Neural Network- 2010 2nd

International Conference On Future Computer

And Communication.

[9] International Journal Of Computer

Engineering And Technology (Ijcet), ISSN

0976-6367(Print), ISSN 0976 – 6375(Online)

Volume 4, Issue 2, March – April (2012), ©

Iaeme.

[10] Unification of Finite Failure Non-

Homogeneous Poisson Process Models

through Test Coverage* Swapna S. Gokhale,

Teebu Philip, Peter N. Marinos, Kishor S.

Trivedi, Center for Advanced Computing and

Communication Department of Electrical and

Computer Engineering Duke University

Durham, NC 27708-0291

[11] International Journal of Software Engineering

& Applications (IJSEA), Vol.3, No.4, July

2012 DOI: 10.5121/ijsea.2012.3402 13

Effective Implementation Of Agile Practices

– Object Oriented Metrics Too To Improve

Software Quality Veerapaneni Esther Jyothi,

Kaitepalli Srikanth and K. Nageswara Rao

